在移动AI这条道路的探索上,高通既是启蒙者,又是见证者。 无论是小米澎湃OS、OriginOS 4还是ColorOS 14,如果你关注过最近这段时间国内主流手机品牌集中发布的新版系统,会发现AI已经成为发布会PPT上“躲不开,绕不过”的关键词,而且属于提及频率最高的那一档。实际上,这还不是最“过分”的,在今年Google I/O大会上以劈柴哥Sundar Pichai为代表的一众高管,在短短的2个小时主题演讲中就提及了超过140次AI,频率高达平均1.17次/分钟,在官网上,Google甚至将新一代Pixel 8系列言简意赅地称为“由Google AI与最好的Pixel相机打造的最强大、最贴心的Pixel手机”。
突然间,属于智能手机的移动AI时代到来了。 当然如果细究的话,今年手机厂商们口中的“AI”与往年消费者偶尔听到或者在相机界面里看到的那些“AI”还不太一样,今年的AI专指“AI大模型”这个随ChatGPT火到已经泛滥的概念,是一种基于生成式AI技术的大语言/大视觉模型,主要用于图文相关的自然语义理解、处理乃至于创作生成——即与AI大模型概念同样大热的AIGC概念。换句话说,这阵AI风潮本质上是手机厂商集中落地AI大模型所引起的市场“躁动”,而点燃这份躁动的正是以第三代骁龙8为代表的新一代移动SoC平台,它们为AI大模型落地移动端扫清了最为关键的一道硬件障碍,也填上了移动设备真正迈入AI时代最后一块拼图。
从看照片到大模型 移动AI的演进之路 尽管许多消费者今年才对移动端的AI有所耳闻,但其实AI在移动端的应用探索已经持续了很多年,以高通为例,早在十年前也就是2013年就推出了名声大噪的AI芯片Zeroth和SNN架构——彼时高通也同步提出了神经处理单元(NPU)的概念,2014年高通进一步收购了AI图像识别技术公司Euvision进一步探索AI在移动端的潜在用例,并在随后将源于Zeroth的AI加速架构引入了2015年推出的骁龙820移动平台的设计之中,以此奠定了骁龙系列高通AI引擎的基础,高通内部也将骁龙820视为搭载高通“第一代AI引擎”的移动平台。不过彼时移动SoC市场还未流行AI的说法,高通也未进行过这方面的宣传,所以这就造成了当2018年NPU概念兴起之后,许多消费者产生了此时高通才在移动AI赛道上发力的“错觉”,但实际上,高通早在2007年就启动了首个AI研究项目,掐指一算,从懵懂独行到行合趋同,高通在AI上探索已经历经十七载,基本完整覆盖了整个智能手机发展史。
所以,在移动AI这条道路上,高通既是启蒙者,又是见证者。 说到这里,我们也可以从AI这一概念在移动端的经历窥知移动AI发展之路上最大的阻碍——缺乏用例。相信不少消费者在2019年前后通过NPU的大名,或者冲着看似相当美好的AI宣传入手了新机,但在系统中却难以发现AI存在的踪迹,印象中还有厂商趁着当时歌曲《卡路里》的热度绞尽脑汁推出了类似“识食物得卡路里”的比较尴尬的AI功能,这也导致当初诸多探索的AI功能中,似乎只有相机的AI场景识别留存至今。行业最初在移动AI用例上的探索主要集中在机器视觉与图像识别,但也正因如此导致曲高寡,以至于无法贴近用户日常生活而一直不得要领。 但以ChatGPT为代表的生成式AI带来了颠覆性的变革,让行业看到了AI大模型所蕴含的潜力。AI大模型其中的AI指代的自然是人工智能,而这个人工智能则是由深度学习算法和人工神经网络训练而出的;大模型则是大语言模型,之所以被称为“大”模型,是因为这类模型参数规模经常数以亿计,而语言模型就是通过大量参数预训练的自然语言处理模型,以生成式AI实现文字的生成、总结、改写、搜索、回答、聚类、分类等复杂目标。简单来说,AI大模型就像《猩球崛起》中给予凯撒智力的“ALZ-112”一样,有着赋予机器自然语义理解——也就是听懂人话的能力,当一台可以连接互联网的手机能听懂对话与你交流的时候……它的能力上限大多时间只会与产品经理的想象力边界挂钩了,这时如何将“大”模型装进用户的“小”手机中,就成为AI赋能移动端最大的阻碍,而第三代骁龙8移动平台正是为此而来。
第三代骁龙8 启幕2024移动AI元年 目前将AI大模型“塞入”移动端目前的主流做法是云侧大模型,即用户输入通过云端模型处理后返回结果,优点是对输入硬件并无要求,也可以利用参数量级较大的模型,ChatGPT、文心一言、Stable Diffusion等一众知名大模型的to C接口均基于此。但云侧大模型会有2个问题,一是全程基于网络最终效果受限于用户的连接状况,这对于主打对话与理解场景的AI大模型而言是一个相当大的不稳定因素,二是不利于用户隐私安全,数据上云本身就是用户十分抗拒的事情,如果加以限制又会阻止AI理解用户,缺乏个性化。最简单的一个例子就是你可以让云侧大模型为你推荐全球米其林榜单,但却无法在不上传位置信息的情况下推荐离自己最近的高评分餐厅。 被形容为“外置器官”的智能手机本身就是用户个人的一部分,如果让这个“器官”变为“大脑”,前途不可限量。也正因如此,端侧AI大模型的需求呼之欲出,甚至被视为有可能最先“引爆”这一轮AI大模型的杀手级场景。基于这些考量,高通在2023服贸会上发布了《混合AI是AI的未来》白皮书,提出了混合AI的概念——即云端结合,移动端在接入云侧大模型的同时,也有必要具备终端侧运行大模型的能力,这样才能分利用手机上的全部数据,借助用户个人数据持续微调这类神经网络,能够带来更深入的意图理解和更加个性化的复杂场景服务。也就是说,云侧大模型的通识能力要有,端侧大模型的个性化能力也要有,这样才称得上是健全。
而第三代骁龙8移动平台正是新一代移动SoC端侧AI大模型的领导者之一。高通多年来一直在探索生成式AI,不仅在年初就演示了首次在Android设备上跑通Stable Diffusion,生成AI图像用时仅15秒,在2023骁龙峰会上,这个时间被进一步压缩至0.6秒内——低到了一个很不可思议的数量级。这不仅是同类产品中是最快,甚至也可以嵌入相机应用无缝使用中,高通观察到用户拍摄间等待阈值为1-2秒,如果运行一次模型需要15秒就失去了实用价值,但如果以0.6秒就可以实现一次运行,就可以让用户真正地无成本地去使用它。
之所以能实现如此迅速的生成速度,一方面是因为第三代骁龙8搭载的全新AI引擎实现了性能与能效飞跃,搭载了史上最快的高通Hexagon NPU,比上一代推理速度快98%,每瓦特性能提升40%,支持大模型参数规格从年初的10亿量级暴增10倍至100亿,可以以20个Token/s的速度进行AI大模型的生成。高通传感器中枢也引入了下一代微型NPU,将AI性能提升至前代的3.5倍,内存提升30%,在第三代骁龙8的加持下接入大语言模型的AI助手能够与高通传感器中枢协同工作,利用位置和活动数据等信息,结合情境提供个性化的回答。
第三代骁龙8之所能提供终端侧运行AI大模型的能力,除了本身就极为强悍的AI能力之外,还得益于高通对端侧AI大模型发展的观察、理解与深度参与,一方面是因为模型变得愈来愈好,比如高通发现拥有130亿参数的Meta Llama 2模型的表现其实并不逊色于拥有1750亿参数的ChatGPT-3模型,这也意味着强大的生成式AI模型正不断缩小;另一方面高通一直在利用INT4模型进行数据推理,通过INT模型进行量化是因为它的量化效果和效率相比常见的浮点模型更出色,将拥有70亿参数的模型量化至INT4模型,与将相同参数规模的模型量化至16FP或32FP浮点模型相比,能够有效降低内存带宽占用,让AI大模型推理更契合移动端的高能效低功耗需求。 可以预见的是,2024年,AI能力——无论是算力规模、每瓦性能、Token生成速度还是调通LLM/LVM的参数量级——都将加入移动SoC“核心规格”的定义之中。 |
中国IDC服务网 ( 京ICP备2021033606号-3 )
GMT+8, 2024-12-27 08:59 , Processed in 0.117273 second(s), 13 queries .
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.